Prevention of Serpin Misfolding by RNA Aptamers
نویسندگان
چکیده
منابع مشابه
RNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers
Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be...
متن کاملA protein family under 'stress' - serpin stability, folding and misfolding.
The native fold of inhibitory serpins (serpin proteinase inhibitors) is metastable and therefore does not represent the most stable conformation that the primary sequence encodes for. The most stable form is adopted when the reactive centre loop (RCL) inserts, as the fourth strand, into the A b -sheet. Currently a serpin can adopt at least four more stable conformations, termed the cleaved, del...
متن کاملForce-induced misfolding in RNA.
RNA folding is a kinetic process governed by the competition of a large number of structures stabilized by the transient formation of base pairs that may induce complex folding pathways and the formation of misfolded structures. Despite its importance in modern biophysics, the current understanding of RNA folding kinetics is limited by the complex interplay between the weak base pair interactio...
متن کاملInhibition of HCV NS3 protease by RNA aptamers in cells.
Non-structural protein 3 (NS3) of hepatitis C virus (HCV) has two distinct activities, protease and helicase, which are essential for HCV proliferation. In previous work, we obtained RNA aptamers (G9-I, II and III) which specifically bound the NS3 protease domain (DeltaNS3), efficiently inhibiting protease activity in vitro. To utilize these aptamers in vivo, we constructed a G9 aptamer express...
متن کاملRAPID-SELEX for RNA Aptamers
Aptamers are high-affinity ligands selected from DNA or RNA libraries via SELEX, a repetitive in vitro process of sequential selection and amplification steps. RNA SELEX is more complicated than DNA SELEX because of the additional transcription and reverse transcription steps. Here, we report a new selection scheme, RAPID-SELEX (RNA Aptamer Isolation via Dual-cycles SELEX), that simplifies this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Chemical Biology
سال: 2016
ISSN: 2451-9456
DOI: 10.1016/j.chembiol.2016.06.002